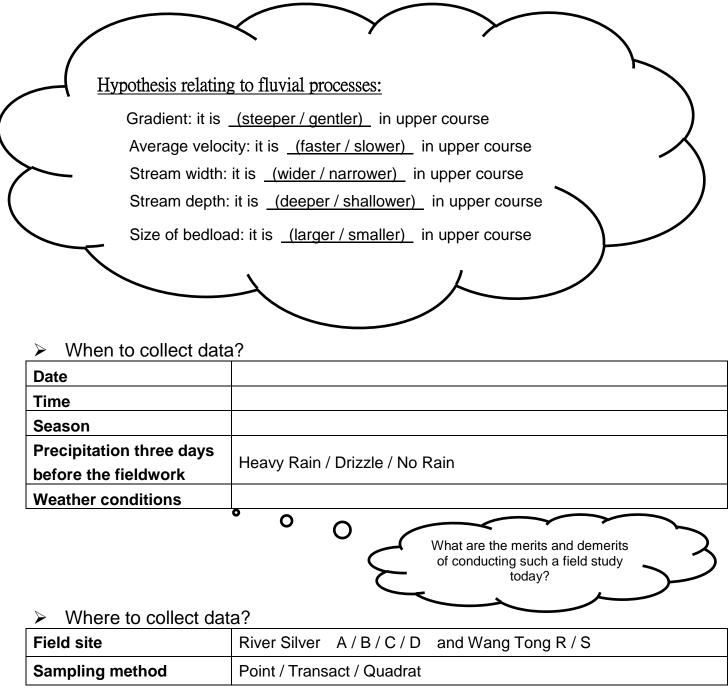


明愛陳震夏郊野學園 香港 長洲 芝麻坑路 39號 電話 Tel: 2981 1899 傳真 Fax: 2981 3767 Caritas Chan Chun Ha Field Studies Centre

39 Chi Ma Hang Road, Cheung Chau, Hong Kong 網址 Website:http://www.caritasfsc.edu.hk 電郵 E-mail :info@caritasfsc.edu.hk

Ðv	ifting Classroom	
Student Name:	Group no.:	
Course Date:		

Course Objectives

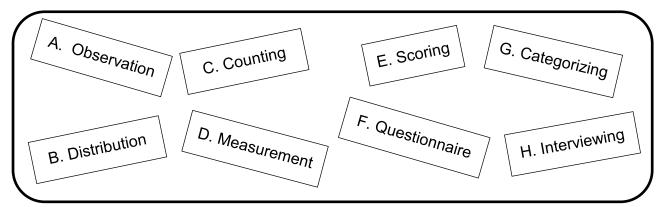

Knowledge:	 To identify the characteristics of river courses and the associated landforms. To relate the exogenetic fluvial processes with the characteristics of river courses and the associated landforms. To analyze how human factors (river management strategies and land use) affect the characteristics of river courses.
Skills:	 To collect field data by appropriate equipment. To draw the cross section.
Value:	 To appreciate the natural beauty of rivers. To respect and treasure the intimate relationship between rivers, ecosystem and settlement.

Relevance to DSE Geography Curriculum

Managing river environment: A continuing challenge

Stage 1: Planning and preparation

- Key point of fieldwork: Fluvial processes in different stream courses
- Hypothesis: propose some hypotheses about the differences between upper course and lower course of a river


Stage 2: Data Collection

Students are divided into groups. Within the group, some students measure fluvial data in the river. The rest of the students are responsible for recording land uses and stream management measures.

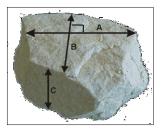
Refer to p.3 and match the appropriate field methods and equipment to the research items.

	Research items	Field method	Required equipment / Tool (if any)	Operational precautions
ess	1. The stream bed			
l proc	2. The velocity			
lluvia	3. The size of bedload			
Related to fluvial process	4. The stream width			
Relat	5. The stream depth			
	6. The stream gradient			
ty	7. Water turbidity			
Stream water quality	8. Water and air temperature			
water	9. The pH value			
ream	10. The conductivity			
St	11. Green algae			
	12. Stream river			
Other	management strategies			
Oť	13. Fluvial landforms			
	14. Surrounding land use			

* A towel is given to dry up the equipment.

Equipment / Tools 1. Digital thermometer 2. Table tennis ball 3. Conductivity meter 4. pH meter DIST 5. Stop watch 00 6. Measuring tape 7. Meter ruler 8. Abney level 9. Bottle (transparent)

1. Strea 2. Strea	m Velocity:	Are there any diffic measuring stream	
	Table tennis ball ling time for 1 meter (seconds)	Stream Velocity (m/sec) (rounded off to 2 decimal places)	Adjust the result by the "float fudge factor"
e.g.	20 seconds	1m / 20sec = 0.05m/sec	
1			
2			Average Velocity =Average X 0.8
3			=m/sec×0.8
4			=m/sec (rounded off to 2 decimal
5			places)
	Average =	m / sec	
atten	t should you pay tion when taking bles?	3	Why does the result need to be adjusted?


3. Size of bedload: pick up 5 bedload with typical size in your site and measure the length of axis B. (Refer to Figure 1)

Sample	1	2	3	4	5	Average diameter (mm)	Major types of bedload
Diameter(mm) *							

* Mark as "<1mm" for those grains which have diameter of less than 1mm

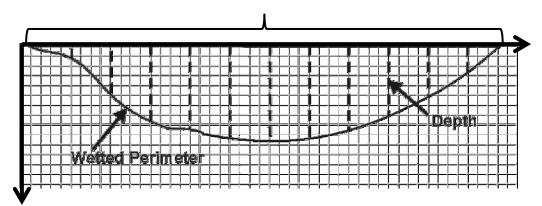
Classification of stream bedload

Type of bedload	Boulder	Cobble	Pebble	Granule	Sand
Diameter(mm) *	>256	>64-256	>4-64	>2-4	0.06-2

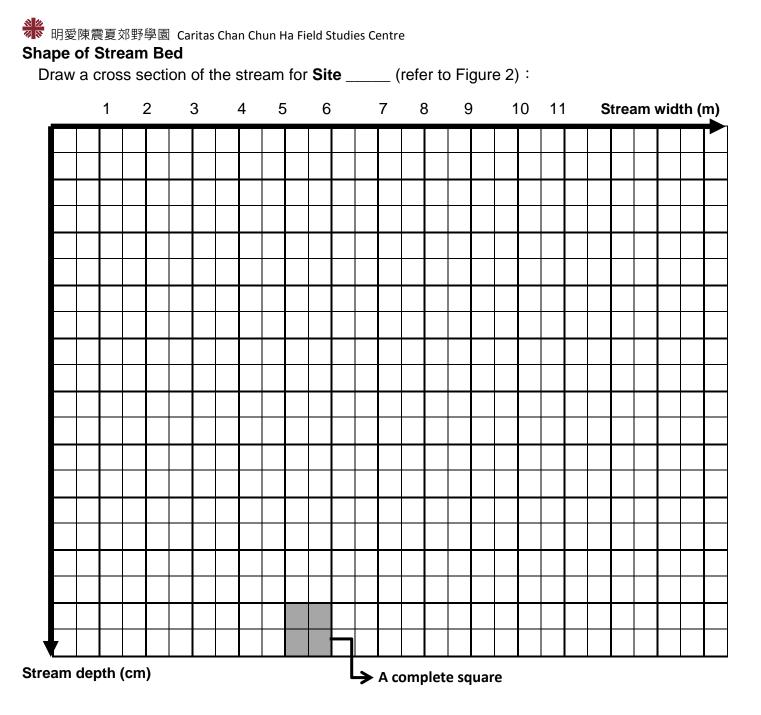
← Figure 1: How to measure a bedload (appropriate for pebble or bigger)

Axis A is the longest axis.

Axis C is the shortest axis.

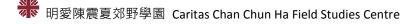

Axis B is the axis perpendicular to axis A.

4. Stream Width: _____m

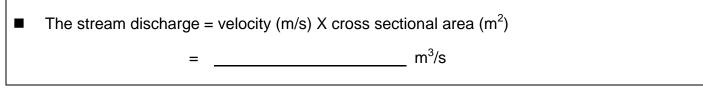

5. Stream Depth: (0.5m per interval)

Interval	Depth (cm)	Interval	Depth (cm)	Interval	Depth (cm)	Interval	Depth (cm)	Interval	Depth (cm)
1 (0.0m)		7 (3.0m)		13 (6.0m)		19 (9.0m)		25 (12.0m)	
2 (0.5m)		8 (3.5m)		14 (6.5m)		20 (9.5m)		26 (12.5m)	
3 (1.0m)		9 (4.0m)		15 (7.0m)		21 (10.0m)		27 (13.0m)	
4 (1.5m)		10 (4.5m)		16 (7.5m)		22 (10.5m)		28 (13.5m)	
5 (2.0m)		11 (5.0m)		17 (8.0m)		23 (11.0m)		29 (14.0m)	
6 (2.5m)		12 (5.5m)		18 (8.5m)		24 (11.5m)		30 (14.5m)	
The Deepest Depth (cm): What sampling method did you use in measuring the stream depth?									

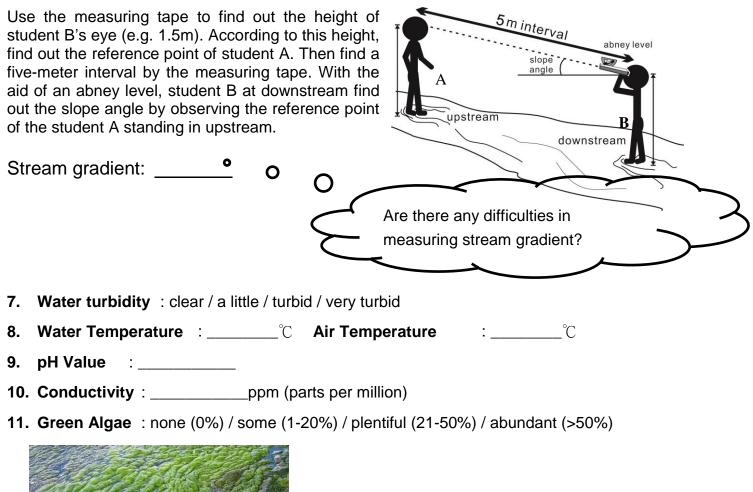
Channel Width

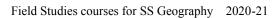


↑ Figure 2: Cross-section of a stream channel.



Use "counting squares" method to find out the stream cross-sectional area.


	Area	Total no. of square(s)
A complete square:	Xm ²	
An incomplete square:	Area of a complete square/ 2 = m ²	
The stream cross-s	ectional area ism ²	\sim
Another method to calcu	ulate the stream cross-sectional area:	
Stream width(m) X	Average stream depth (m)	hich method is
=m X	m =m²	ore accurate?



Calculate the stream discharge by using the stream data collected. Show your calculation steps.

6. Stream Gradient

B. Record of River management strategies and land uses 1. River management measures Wang Tong **River Silver** (for a-f put a ' \checkmark ' where appropriate) 2. List the landforms in g that are found В С D R* S Α a) Channelization b) Weir c) Concrete Frame with Soil Sacks d) Gabion e) Monitoring and Warning Signs f) Others (if any, please specify) g) Fluvial landforms

* Can be adjusted according to time available

C. Land Use along the field route (\checkmark the appropriate land use)

		River		Wang	Tong	
Land use	Around Site A	Site B to Site A	Site C to Site B	Site D to Site C	Site R to Site S*	Around Site S
Commercial						
Residential						
Industrial						
GCI [#]						
Recreational						
Agricultural						
Abandoned						
Vacant						
Work in progress						

* Can be adjusted according to time available #GCI stands for government, community and institution

Stage 3: Data Processing and Presentation

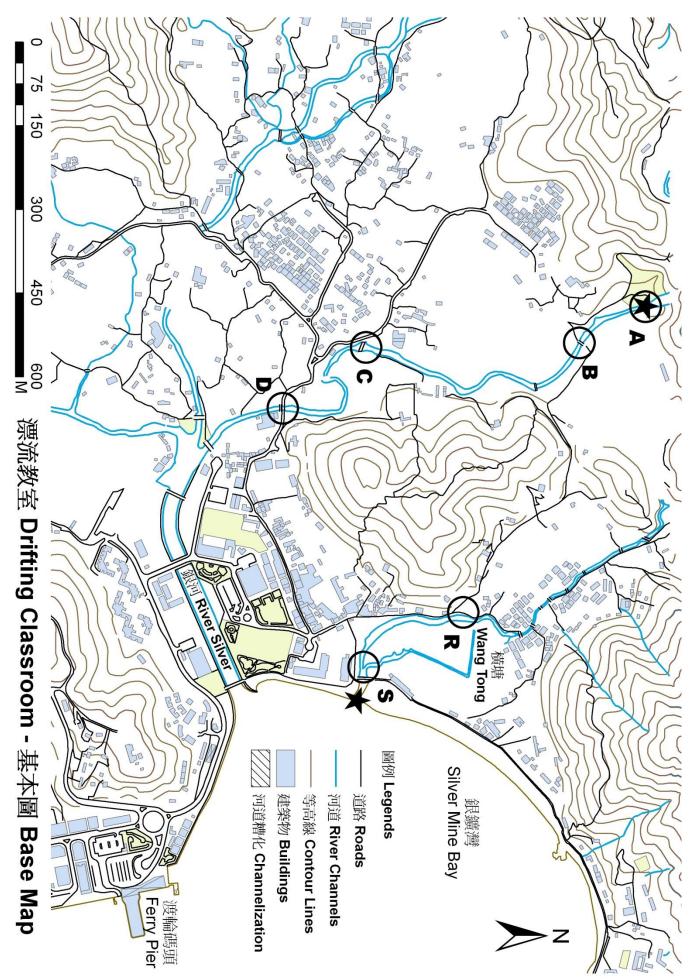
- 1. Calculate the average stream velocity (p.4)
- 2. Calculate the average size of bedload (p.4)
- 3. Draw the stream cross section (p.6) and calculate the cross-sectional area(p.6) and the discharge(p.7)
- 4. Fill in the data summary table (p. 10)

Summary of Data

Group		Compare with typical river
Site		$(\checkmark = similar \\ \times = different)$
Stream Bed		
Stream Velocity (m/s)		
Average Diameter of Bedload (mm)		
Stream Width (m)		
Stream Deepest Depth (cm)		
Cross Sectional Area (m ²)		
Discharge (m ³ /s)		
Stream Gradient		
Water Turbidity		
Water Temperature (℃)		
Air Temperature (℃)		
pH Value		
Conductivity (ppm)		
Green Algae		

Stage 4: Data Interpretation & Conclusion

Discussion Questions


- 1. With reference to the summary of data (p.10), explain whether the hypotheses in p.1 are correct:
 - a) gradient
 - b) average velocity
 - c) stream width
 - d) stream depth
 - e) size of bedload
- 2. Describe the differences of stream management strategies in the following field sites. Explain.
 - a) Site A and B vs Site C and D
 - b) Site C and D vs Site R and S

Stage 5: Evaluation

- 1. According to today weather and season, point out one advantage and one limitation of the fieldwork about "fluvial processes" today. How can you overcome this limitation?
- 2. Describe and explain how the data quality is influenced when collecting the following data. Suggest how you can increase the validity and reliability in data collection.
 - a) stream velocity
 - b) diameter of bedload
 - c) stream depth
 - d) stream gradient
 - e) water quality
- 3. Today, the data collected is focusing on "the fluvial process". We need to have further study for a better understanding about the stream environment. Choose one of the following topics and elaborate your study plan (e.g. field site / date / time / data collected / field methods / sampling methods):
 - a) stream management strategies
 - b) water quality

Homework:

After the fieldwork, please organize this fieldwork experience in field trip diary on p.13-14, as a reference for the revision of field-based question.

My Field Trip Diary

> Related modules: Managing River and Coastal Environment : A continuing challenge

۶	Key point of fieldwork/topic:						
	Date:	(Weekday/ Public holiday)	•	Weather condition:			
	Time:	Field site:					
ls	Is the above planning appropriate for the fieldwork?						

Primary data:

Data collection method	Data collected	Equipment/ Material (if any)	Merits/ Demerits of the data collection method (give examples)	Suggestion for improvement (give explanations)
Measurement				
Observation				
Counting				
Questionnaire/				
Interview				
Other (if any)				

['] 明愛陳震夏郊野學園 Caritas Chan Chun Ha Field Studies Centre

Secondary data (for supplementary information only):

Data collected	Use	Data obtained from			
Apart from the above, what other secondary data could be used for further investigation?					
Apart nom the above, what other secondary data could be ased for further investigation.					

Sampling method (if any):

Sampling method	Data to be collected	Merits/ Demerits

Data processing and presentation:

Type of graph/ chart	Content shown and function of graph/chart

For deeper learning or further study, I suggest modify the following aspects.

	Suggestion	(give examples)
Key point of fieldwork/ topic		
Data to be collected and method of data collection		
Date and time of fieldwork		
Field site		