

電話 Tel: 2981 1899 傳真 Fax: 2981 3767

Caritas Chan Chun Ha Field Studies Centre

39 Chi Ma Hang Road, Cheung Chau, Hong Kong

網址 Website: http://www.caritasfsc.edu.hk 電郵 E-mail : info@caritasfsc.edu.hk

Drifting Classroom

Course Objectives

- Knowledge: 1. To identify the characteristics of river courses and the associated landforms.
 - 2. To relate the exogenetic fluvial processes with the characteristics of river courses and the associated landforms.
- Skills: 1. To analyze how human factors (river management measures and land use) affect the

characteristics of river courses.

- 2. To collect field data by appropriate equipment.
- 1. To appreciate the natural beauty of rivers. Attitude:
 - 2. To respect and treasure the intimate relationship between rivers, ecosystem and

settlement.

Name:	Group:	
School :		
Date :		

New Senior Secondary Geography Curriculum

- Managing river and coastal environments: A continuing challenge
- Building a sustainable city—Are environmental conservation and urban development mutually exclusive?

Field Equipment

Activity	Equipment	Quantity
1. Measure the stream width	15m measuring tape	1
2. Measure the stream depth	15m measuring tape	1
	Meter ruler / rope **	1
3. Measure the velocity	Meter ruler	1
	Stop watch	1
	Table tennis ball	1
4. Measure the size of	15m measuring tape	1
bedload	Meter ruler	1
5. Measure the pH value	pH meter	1
6. Measure the conductivity	Conductivity meter	1
7. Measure the temperature	Digital thermometer (extension)	1
_	Plastic bottle	1
8. Observe the organisms	Aquarium net	1
	Rubber gloves	1 pair

^{*} A towel is given to dry up the equipment.

A. Revision: Characteristics of a typical stream

	Upper Course	Middle Course	Lower Course
1. Gradient	Very Steep / Steep /	Very Steep / Steep /	Very Steep / Steep /
	Gentle	Gentle	Gentle
2. Valley Shape	Deep V shape / Becoming	Deep V shape / Becoming	Deep V shape / Becoming
	Wide V shape /	Wide V shape /	Wide V shape /
	Wide V shape	Wide V shape	Wide V shape
3. Volume	Large / Becoming Large /	Large / Becoming Large /	Large / Becoming Large /
	Smallest	Smallest	Smallest
4. Average	Large / Becoming Large /	Large / Becoming Large /	Large / Becoming Large /
Velocity	Smallest	Smallest	Smallest
5. Fluvial	Erosion / Transportation /	Erosion / Transportation /	Erosion / Transportation /
Processes	Sedimentation	Sedimentation	Sedimentation
6. Characteristics of bedload	Big and Coarse /	Big and Coarse /	Big and Coarse /
	Becoming Smaller and	Becoming Smaller and	Becoming Smaller and
	Smooth / Fine and	Smooth / Fine and	Smooth / Fine and
	Smooth	Smooth	Smooth
7. Landforms			

^{**} If the water level is up to waist, measure the stream depth by measuring tape and rope.

B. Record of studied stream

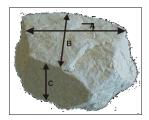
Site _____

1. Stream Bed : rocky / sandy / muddy / weedy

2. Water Colour: clear / milky / brown / black

3. Water Temperature : ______°C Air Temperature : _____°C

4. pH Value : _____


5. Conductivity: _____ppm (parts per millennium)

6. Green Algae : none / some / plentiful / abundant

7. Stream Velocity:

	table tennis ball traveling time for 1 m	Stream Velocity (m/sec)	
e.g.	20 seconds	1 m / 20 sec = 0.05 m/sec	
1			Average X 0.8
2			= m/sec
3			(round off to 2 decimal places)
4			
5			
	Average =	m / sec	

8. Size of bedload

Measure the diameter of B axis by a ruler.

No.	1	2	3	4	5	Average
Length of						
axis (mm)						

Classification of Stream Bedload

Type of Bedload	Diameter
Boulders	>200 mm
Pebbles	50 – 200 mm
Gravel	2 – 50 mm
Sand	0.2 – 2 mm

9. Stream Width: _____m

10. Stream Depth: (0.5m as one interval)

Interval	Depth (cm)	Interval	Depth (cm)	Interval	Depth (cm)	Interval	Depth (cm)	Interval	Depth (cm)
1 (0.0m)		7 (3.0m)		13 (6.0m)		19 (9.0m)		25 (12.0m)	
2 (0.5m)		8 (3.5m)		14 (6.5m)		20 (9.5m)		26 (12.5m)	
3 (1.0m)		9 (4.0m)		15 (7.0m)		21 (10.0m)		27 (13.0m)	
4 (1.5m)		10 (4.5m)		16 (7.5m)		22 (10.5m)		28 (13.5m)	
5 (2.0m)		11 (5.0m)		17 (8.0m)		23 (11.0m)		29 (14.0m)	
6 (2.5m)		12 (5.5m)		18 (8.5m)		24 (11.5m)		30 (14.5m)	

Shape	٥f	River	Red
SHape	UΙ	IXIVCI	DCu

Draw a cross section of the stream:

Site	

											S	tre	am 1	wid1	th (I	m)

Stream depth (cm)

C. Record of Environment

1. River management Measures (✓ where appropriate)

S	, , ,	Site A	Site B	Site C	Site D
a) Channelization					
b) Weir					
c) Concrete Frame with Soil Sacks					
d) Gabion					
e) Monitoring and Warning Signs	だい WE DANGER 超速車 ので変更 をEP WATER STAY AWAY をEP WATER STAY AWAY 2 18 37 2 7 18 17 18 18 18 18 18 18 18 18 18 18 18 18 18				
f) Others (if any, p	lease specify)				

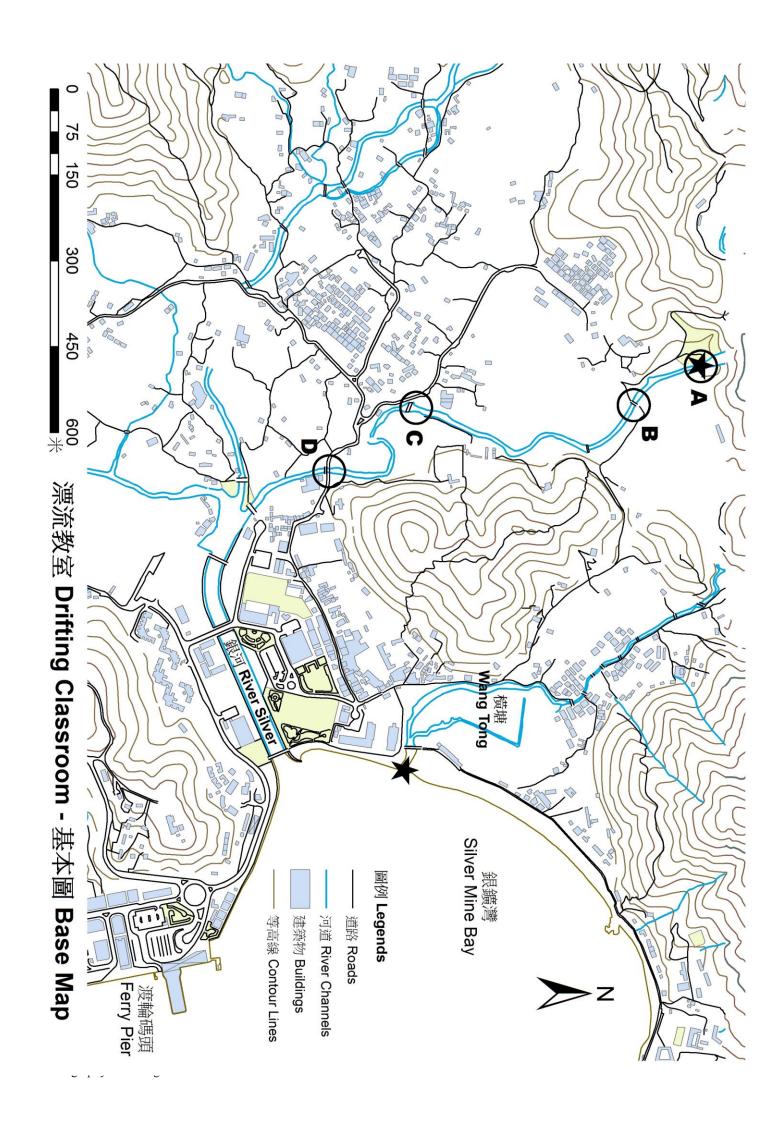
2. Land Use (circle the appropriate land use)

Around Site A	Commercial / Residential / Industrial / GCI / Recreational / Agricultural / Abandoned / Vacant / Work in progress						
Site B to Site A	Commercial / Residential / Industrial / GCI / Recreational / Agricultural / Abandoned / Vacant / Work in progress						
Site C to Site B	Commercial / Residential / Industrial / GCI / Recreational / Agricultural / Abandoned / Vacant / Work in progress						
Site D to Site C	Commercial / Residential / Industrial / GCI / Recreational / Agricultural / Abandoned / Vacant / Work in progress						

D. Explore the Landforms

Observe the location mark with \bigstar on the map. List the fluvial landforms that can be found in Rive Silver and Wang Tong respectively?

	River Silver	Wang Tong
Fluvial		
Fluvial landforms		


E. Challenging Question

The level of artificialization is different between the lower course of River Silver and Wang Tong. Explain by comparing the human activities at the surrounding area.

	Lower course of River Silver	Lower course of Wang Tong
Artificialization	higher / lower	higher / lower
Human activities at the surrounding area		

Summary of Data

Stream Bed				
Water Colour				
Water Temperature				
Air Temperature				
pH Value				
Conductivity				
Green Algae				
Stream Velocity				
Average Diameter of Bedload				
Stream Width				

